
1

Python Programming

Döngü Yapıları ve Boolean

2

Objectives
• Belirli ve belirsiz döngü kavramlarını Python for ve while deyimlerinde

gerçekleştirildikleri şekliyle anlamak.

• Etkileşimli döngü, başlangıç ve bitiş simgesi döngü programlama modellerini

ve bunların bir Python while deyimi kullanarak uygulamalarını anlamak.

• Python'da dosya sonu döngüsünü programlama modelini ve bu tür döngüleri

uygulama yollarını anlamak.

• İç içe döngü yapıları da dahil olmak üzere döngü örüntülerini içeren

problemlere çözüm tasarlayabilme ve uygulayabilme.

• Boole cebirinin temel fikirlerini anlamak ve Boole operatörlerini içeren Boole

ifadelerini analiz edebilmek ve yazabilmek.

for

for

animals = ["monkey", "lion", "elephant"]

for animal in animals:

 print(animal)

for number in [1, 2, 3, 4, 5]:

 square = number * number

 print(square)

for x in "Apple":

 print(x)

Öğrenciler dizisinde indis öğrenci olarak

tanımlanır.

Örneğin:

students=["Furkan", "Ahmet", "Sumeyye",

"Seyda", "Yusuf", "Adem"]

for student in students:

 print(student)

The range() Function in Python
• Bir sayı aralığı oluşturmak ve bunun içinde döngü yapmak istemeniz oldukça

yaygındır.

• Örneğin, 1'den 1000'e kadar saymak istiyorsanız, bir liste oluşturup içine 1000

numara yerleştirmek istemezsiniz.

• Bunun yerine yerleşik range() işlevini kullanabilirsiniz.Bu işlev, yinelenebilir bir

sayı aralığı oluşturmayı kolaylaştırmak için tasarlanmıştır.

• Örneğin, range() kullanarak 1'den 10'a kadar olan sayıları yazdıralım:

for number in range(1, 11):

 print(number)

Örnek:

for number in range(1, 21):

 if number % 2 != 0:

 print(number)

Not: 1,2, …, 20; n-1

Örnek:

numbers = [1, 2, 3, 4, 5]

for number in numbers:

 if number == 3:

 break

 print(number)

else:

 print("The loop ran from start to finish.")

8

For Loops: A Quick Review
• The for statement allows us to iterate through a sequence of values.

• for <var> in <sequence>:

 <body>

• Döngü dizin değişkeni var, dizideki ardışık her değeri alır ve döngü
gövdesindeki ifadeler, her değer için bir kez yürütülür.

• Kullanıcı tarafından girilen bir dizi sayının ortalamasını hesaplayabilen bir
program yazmak istediğimizi varsayalım.

• Programı genel yapmak için, herhangi bir boyuttaki sayı kümesiyle
çalışmalıdır.

• Girilen her sayıyı takip etmemize gerek yok, sadece dönen toplamı ve kaç
sayının eklendiğini bilmemiz gerekiyor.

• Bir dizi sayı bir tür döngü tarafından işlenebilir. n sayı varsa, döngü n kez
yürütülmelidir.

• Devam eden bir yekün değere ihtiyacımız var. Bu bir akümülatör kullanacaktır.

9

For Loops: A Quick Review
average1.py

A program to average a set of numbers

Illustrates counted loop with accumulator

def main():

 n = eval(input("How many numbers do you have? "))

 sum = 0.0

 for i in range(n):

 x = eval(input("Enter a number >> "))

 sum = sum + x

 print("\nThe average of the numbers is", sum / n)

• Note that sum is initialized to 0.0 so that sum/n returns a float!

• Input the count of the

numbers, n

• Initialize sum to 0

• Loop n times

– Input a number, x

– Add x to sum

• Output average as sum/n

10

For Loops: A Quick Review
How many numbers do you have? 5

Enter a number >> 32

Enter a number >> 45

Enter a number >> 34

Enter a number >> 76

Enter a number >> 45

The average of the numbers is 46.4

range

12

range

• The range function specifies a range of integers:
• range(start, stop) - the integers between start (inclusive)
 and stop (exclusive)

– It can also accept a third value specifying the change between values.
• range(start, stop, step) - the integers between start (inclusive)
 and stop (exclusive) by step

– Example:
 for x in range(5, 0, -1):
 print x
 print "Blastoff!"

Output:
 5
 4
 3
 2
 1
 Blastoff!

Range: producing lists of integer numbers

• Often you need a regularly spread list of numbers from a beginning value to an end value.
• This is done by the range function:
"""" range gives a list of int numbers note that end value is NOT included! """

r1 = range(11) # 0...10
Print(r1) # [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
r2 = range(5,16) # 5...15
Print(r2) # [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]
r3 = range(4,21,2) # 4...20 step 2
Print(r3) # [4, 6, 8, 10, 12, 14, 16, 18, 20]
r4 = range(15, 4, -5) # 15....5 step -5
print (r4)# [15, 10, 5]

• The general syntax is, range (<startvalue>, <endvalue>, <stepsize>)

• Take care: A strange (and somewhat illogical) detail of the range function is that the end value is

excluded from the resulting list! The range function only works for integers!

Producing lists of floating point numbers

• If you need floating point numbers, use linspace from the Numpy module, a package that is very
useful for technical and scientific applications. This package must be installed first, it is available at
http://www.numpy.org/

• Don't forget to import the module in your script!
• Note: Here we use a slightly different method of import that avoids confusion between names of

variables and numpy funtions. There are 3 ways to import functions from a module, see appendix.
""" for floating point numbers use linspace and logspace from numpy!"""
import numpy as np
r5 = np.linspace(0,2,9)
print r5
[0. 0.25 0.5 0.75 1. 1.25 1.5 1.75 2.]

• The syntax for linspace is
 linspace (<startvalue>, <stopvalue>, <number_of_values>)
• The next example gives 9 logarithmically spaced values between 100 = 102 and 1000 = 103:

r6 = np.logspace(2, 3, 9)
print r6
[100. 133.35214322 177.827941 237.13737057 316.22776602
421.69650343 562.34132519 749.89420933 1000.]

for

16

for loop

• for loop: Repeats a set of statements over a group of values.

– Syntax:

 for variableName in groupOfValues:
 statements

• We indent the statements to be repeated with tabs or spaces.
• variableName gives a name to each value, so you can refer to it in the statements.
• groupOfValues can be a range of integers, specified with the range function.

– Example:

 for x in range(1, 6):
 print x, "squared is", x * x

 Output:
 1 squared is 1
 2 squared is 4
 3 squared is 9
 4 squared is 16
 5 squared is 25

17

Cumulative loops

• Some loops incrementally compute a value that is
initialized outside the loop. This is sometimes called a
cumulative sum.

 sum = 0
 for i in range(1, 11):
 sum = sum + (i * i)
 print "sum of first 10 squares is", sum

 Output:
 sum of first 10 squares is 385

• Exercise: Write a Python program that computes the
factorial of an integer.

Iterating through a list: for
• If we have to do something with all the elements of a list (or another sequence like a tuple etc.) one after the other, we use a for

loop.
• The example uses the names of a list of names, one after one:

mynames = ["Sam", "Pit", "Misch"]
for n in mynames:
print "HELLO ", n
HELLO Sam
HELLO Pit
HELLO Misch

• This can also be done with numbers:
from math import *
for i in range (0, 5):
print i, "\t", sqrt(i)
0 0.0
1 1.0
2 1.41421356237
3 1.73205080757
4 2.0

Notes:
• Python's for loop is somewhat different of the for ... next loops of other programming languages. İn principle it can iterate through

anything that can be cut into slices. So it can be used on lists of numbers, lists of text, mixed lists, strings, tuples etc.
• In Python the for ... next construction is often not to be missed, if we think in a "Pythonic" way.
• Example: if we need to calculate a lot of values, it is not a good idea to use a for loop, as this is very time consuming. It is better to

use the Numpy module that provides array functions that can calculate a lot of values in one bunch (see below).

Iterating through a list: for

• If we have to do something with all the elements of a list (or another sequence like a tuple
etc.) one after the other, we use a for loop.

• The example uses the names of a list of names, one after one:
mynames = ["Sam", "Pit", "Misch"]

for n in mynames:

print "HELLO ", n

HELLO Sam

HELLO Pit

HELLO Misch

• This can also be done with numbers:
from math import *

for i in range (0, 5):

print i, "\t", sqrt(i)

0 0.0

1 1.0

2 1.41421356237

3 1.73205080757

4 2.0

Iterating through a list: for

• This can also be done with numbers:
from math import *

for i in range (0, 5):

print i, "\t", sqrt(i)

0 0.0

1 1.0

2 1.41421356237

3 1.73205080757

4 2.0

Notes:

• Python's for loop is somewhat different of the for ... next loops of other programming languages. İn
principle it can iterate through anything that can be cut into slices. So it can be used on lists of
numbers, lists of text, mixed lists, strings, tuples etc.

• In Python the for ... next construction is often not to be missed, if we think in a "Pythonic" way.

• Example: if we need to calculate a lot of values, it is not a good idea to use a for loop, as this is very
time consuming. It is better to use the Numpy module that provides array functions that can
calculate a lot of values in one bunch (see below).

Iterating with indexing

• Sometimes you want to iterate through a list and have access to the index (the numbering) of
the items of the list.

• The following example uses a list of colour codes for electronic parts and prints their index
and the colour. As the colours list is well ordered, the index is also the colour value.
""" Dispay resistor colour code values"""

colours = ["black", "brown", "red", "orange", "yellow",

"green", "blue", "violet", "grey","white"]

cv = list (enumerate (colours))

for c in cv:

print c[0], "\t", c[1]

Iterating with indexing

• The list(enumerate (....)) function gives back a list of tuples cv that contain each an index (the
numbering) and the colour value as text. If we print this we see

• [(0, 'black'), (1, 'brown'), (2, 'red'), (3, 'orange'), (4, 'yellow'), (5, 'green'), (6, 'blue'), (7,
'violet'), (8, 'grey'), (9, 'white')]

• Now we iterate on this, so we get the different tuples one after the other.

• From these tuples we print c[0], the index and c[1], the colour text, separated by a tab.

• So as a result we get:
0 black

1 brown

2 red

...

8 grey

9 white

Iterating with indexing

• The list(enumerate (....)) function gives back a list of tuples cv that contain each an index (the
numbering) and the colour value as text. If we print this we see

• [(0, 'black'), (1, 'brown'), (2, 'red'), (3, 'orange'), (4, 'yellow'), (5, 'green'), (6, 'blue'), (7,
'violet'), (8, 'grey'), (9, 'white')]

• Now we iterate on this, so we get the different tuples one after the other.

• From these tuples we print c[0], the index and c[1], the colour text, separated by a tab.

• So as a result we get:
0 black

1 brown

2 red

...

8 grey

9 white

Loops: break, continue, else

• break and continue like C

• else after loop exhaustion

for n in range(2,10):

 for x in range(2,n):

 if n % x == 0:

 print n, 'equals', x, '*', n/x

 break

 else:

 # loop fell through without finding a factor

 print n, 'is prime'

Avoiding for loops: vector functions

• For loops tend to get slow if there are many iterations to do.

• They are not necessary for calculations on numbers, if the Numpy module is used. It can be
found here http://www.numpy.org/ and must be installed before using it.

• In this example we get 100 values of a sine function in one line of code:
import numpy as np

calculate 100 values for x and y without a for loop

x = np.linspace(0, 2* np.pi, 100)

y = np.sin(x)

print x

print y

while

29

while
• while loop: Executes a group of statements as long as a condition is True.

– good for indefinite loops (repeat an unknown number of times)

• Syntax:

 while condition:

 statements

• Example:

number=1

while number < 200:

 print(number)

 number = number * 2

print(number)

d=math.sqrt(number)

print(d)

– Output:

 1 2 4 8 16 32 64 128

Dikkat: Yazım düzeni çok önemlidir.

Python Programming, 2/e 30

Indefinite Loops

• That last program got the job done, but you need to

know ahead of time how many numbers you’ll be

dealing with.

• What we need is a way for the computer to take care

of counting how many numbers there are.

• The for loop is a definite loop, meaning that the

number of iterations is determined when the loop

starts.

Python Programming, 2/e 31

Indefinite Loops

• We can’t use a definite loop unless we know
the number of iterations ahead of time. We
can’t know how many iterations we need until
all the numbers have been entered.

• We need another tool!

• The indefinite or conditional loop keeps iterating
until certain conditions are met.

Python Programming, 2/e 32

Indefinite Loops

• while <condition>:

 <body>

• condition is a Boolean expression, just like in if

statements. The body is a sequence of one or more

statements.

• Semantically, the body of the loop executes repeatedly

as long as the condition remains true. When the
condition is false, the loop terminates.

Python Programming, 2/e 33

Indefinite Loops

• The condition is tested at the top of the loop. This is
known as a pre-test loop. If the condition is initially
false, the loop body will not execute at all.

Python Programming, 2/e 34

Indefinite Loop

• Here’s an example of a while loop that counts

from 0 to 10:
i = 0

while i <= 10:

 print(i)

 i = i + 1

• The code has the same output as this for loop:
for i in range(11):

 print(i)

Python Programming, 2/e 35

Indefinite Loop

• The while loop requires us to manage the

loop variable i by initializing it to 0 before the

loop and incrementing it at the bottom of the

body.

• In the for loop this is handled automatically.

Python Programming, 2/e 36

Indefinite Loop

• The while statement is simple, but yet

powerful and dangerous – they are a common

source of program errors.

• i = 0

while i <= 10:

 print(i)

• What happens with this code?

Python Programming, 2/e 37

Indefinite Loop

• When Python gets to this loop, i is equal to 0,

which is less than 10, so the body of the loop is

executed, printing 0. Now control returns to the
condition, and since i is still 0, the loop

repeats, etc.

• This is an example of an infinite loop.

Python Programming, 2/e 38

Indefinite Loop

• What should you do if you’re caught in an

infinite loop?

– First, try pressing control-c

– If that doesn’t work, try control-alt-delete

– If that doesn’t work, push the reset button!

Example: While

While

Prints all letters except 'e' and 's'

i = 0

a = 'geeksforgeeks'

while i < len(a):

 if a[i] == 'e' or a[i] == 's':

 i += 1

 continue

 print('Current Letter :', a[i])

 i += 1

Prints number of the 'e'

i = 0

J=0

a = 'geeksforgeeks'

while i < len(a):

 if a[i] == 'e':

 i += 1

 j=j+1

 else

 i += 1

print(‘Number of Letter :', j

While loops
• We can use the computer to do tedious (sıkıcı) tasks, like calculating the square roots of all integers between 0 and 100. In this case

we use a while loop:

""" Calculate quare root of numbers 0 to 100"""

import math
i = 0
while i<= 100:
 print(i, "\t\t" ,math.sqrt(i)) # \t: boşluk bırakır
 i = i + 1

print("READY!")

0 0.0
1 1.0
2 1.41421356237
3 1.73205080757
.....
98 9.89949493661
99 9.94987437107
100 10.0
READY!

While loops
• The syntax is :

while <condition> :
<....
block of statements
...>

• The block of statements is executed as long as <condition> is True, in our
example as long as i <= 100.

• Take care:

Don't forget the ":" at the end of the while statement
Don't forget to indent the block that should be executed inside the while loop!

• The indentation can be any number of spaces (4 are standard), but it must be
consistent for the whole block.

While loops
• Avoid endless loops!
• In the following example the loop runs infinitely, as the condition is always true:

i = 0
while i<= 5 :
Print i

• The only way to stop it is by pressing <Ctrl>-C
• Note: i = i +1 can be written in a shorter and more "Pythonic" way as

• i += 1

Defining functions

def fib(n):
 """Print a Fibonacci series up to n."""

a, b = 0, 1
while b < 10:
 print(b)
 a, b = b, a+b

>>> fib(2000)

• First line is docstring
• first look for variables in local, then global
• need global to assign global variables

Python Programming, 2/e 45

Interactive Loops

• One good use of the indefinite loop is to write

interactive loops. Interactive loops allow a user to

repeat certain portions of a program on demand.

• Remember how we said we needed a way for the

computer to keep track of how many numbers had

been entered? Let’s use another accumulator, called
count.

Python Programming, 2/e 46

Interactive Loops

• At each iteration of the loop, ask the user if there is

more data to process. We need to preset it to “yes” to

go through the loop the first time.

• set moredata to “yes”

while moredata is “yes”

 get the next data item

 process the item

 ask user if there is moredata

Python Programming, 2/e 47

Interactive Loops

• Combining the interactive loop pattern with
accumulators for sum and count:

• initialize sum to 0.0

initialize count to 0

set moredata to “yes”

while moredata is “yes”

 input a number, x

 add x to sum

 add 1 to count

 ask user if there is moredata

output sum/count

Python Programming, 2/e 48

Interactive Loops
average2.py

A program to average a set of numbers

Illustrates interactive loop with two accumulators

def main():

 moredata = "yes"

 sum = 0.0

 count = 0

 while moredata[0] == 'y':

 x = eval(input("Enter a number >> "))

 sum = sum + x

 count = count + 1

 moredata = input("Do you have more numbers (yes or no)? ")

 print("\nThe average of the numbers is", sum / count)

• Using string indexing (moredata[0]) allows us to accept “y”,
“yes”, “yeah” to continue the loop

Python Programming, 2/e 49

Interactive Loops
Enter a number >> 32

Do you have more numbers (yes or no)? y

Enter a number >> 45

Do you have more numbers (yes or no)? yes

Enter a number >> 34

Do you have more numbers (yes or no)? yup

Enter a number >> 76

Do you have more numbers (yes or no)? y

Enter a number >> 45

Do you have more numbers (yes or no)? nah

The average of the numbers is 46.4

Python Programming, 2/e 50

Sentinel Loops

• A sentinel loop continues to process data until

reaching a special value that signals the end.

• This special value is called the sentinel.

• The sentinel must be distinguishable from the

data since it is not processed as part of the

data.

Python Programming, 2/e 51

Sentinel Loops
• get the first data item

while item is not the sentinel

 process the item

 get the next data item

• The first item is retrieved before the loop starts. This is
sometimes called the priming read, since it gets the
process started.

• If the first item is the sentinel, the loop terminates and
no data is processed.

• Otherwise, the item is processed and the next one is
read.

Python Programming, 2/e 52

Sentinel Loops

• In our averaging example, assume we are

averaging test scores.

• We can assume that there will be no score

below 0, so a negative number will be the

sentinel.

Python Programming, 2/e 53

Sentinel Loops

average3.py

A program to average a set of numbers

Illustrates sentinel loop using negative input as sentinel

def main():

 sum = 0.0

 count = 0

 x = eval(input("Enter a number (negative to quit) >> "))

 while x >= 0:

 sum = sum + x

 count = count + 1

 x = eval(input("Enter a number (negative to quit) >> "))

 print("\nThe average of the numbers is", sum / count)

Python Programming, 2/e 54

Sentinel Loops
Enter a number (negative to quit) >> 32

Enter a number (negative to quit) >> 45

Enter a number (negative to quit) >> 34

Enter a number (negative to quit) >> 76

Enter a number (negative to quit) >> 45

Enter a number (negative to quit) >> -1

The average of the numbers is 46.4

Python Programming, 2/e 55

Sentinel Loops

• This version provides the ease of use of the
interactive loop without the hassle of typing ‘y’
all the time.

• There’s still a shortcoming – using this method
we can’t average a set of positive and negative
numbers.

• If we do this, our sentinel can no longer be a
number.

Python Programming, 2/e 56

Sentinel Loops

• We could input all the information as strings.

• Valid input would be converted into numeric

form. Use a character-based sentinel.

• We could use the empty string (“”)!

Python Programming, 2/e 57

Sentinel Loops
initialize sum to 0.0

initialize count to 0

input data item as a string, xStr

while xStr is not empty

 convert xStr to a number, x

 add x to sum

 add 1 to count

 input next data item as a string, xStr

Output sum / count

Python Programming, 2/e 58

Sentinel Loops
average4.py

A program to average a set of numbers

Illustrates sentinel loop using empty string as sentinel

def main():

 sum = 0.0

 count = 0

 xStr = input("Enter a number (<Enter> to quit) >> ")

 while xStr != "":

 x = eval(xStr)

 sum = sum + x

 count = count + 1

 xStr = input("Enter a number (<Enter> to quit) >> ")

 print("\nThe average of the numbers is", sum / count)

Python Programming, 2/e 59

Sentinel Loops
Enter a number (<Enter> to quit) >> 34

Enter a number (<Enter> to quit) >> 23

Enter a number (<Enter> to quit) >> 0

Enter a number (<Enter> to quit) >> -25

Enter a number (<Enter> to quit) >> -34.4

Enter a number (<Enter> to quit) >> 22.7

Enter a number (<Enter> to quit) >>

The average of the numbers is 3.38333333333

Python Programming, 2/e 60

File Loops

• The biggest disadvantage of our program at

this point is that they are interactive.

• What happens if you make a typo on number

43 out of 50?

• A better solution for large data sets is to read

the data from a file.

Python Programming, 2/e 61

File Loops
average5.py

Computes the average of numbers listed in a file.

def main():

 fileName = input("What file are the numbers in? ")

 infile = open(fileName,'r')

 sum = 0.0

 count = 0

 for line in infile.readlines():

 sum = sum + eval(line)

 count = count + 1

 print("\nThe average of the numbers is", sum / count)

Python Programming, 2/e 62

File Loops

• Many languages don’t have a mechanism for

looping through a file like this. Rather, they use

a sentinel!

• We could use readline in a loop to get the

next line of the file.

• At the end of the file, readline returns an

empty string, “”

Python Programming, 2/e 63

File Loops
• line = infile.readline()

while line != ""

 #process line

 line = infile.readline()

• Does this code correctly handle the case where
there’s a blank line in the file?

• Yes. An empty line actually ends with the
newline character, and readline includes the
newline. “\n” != “”

Python Programming, 2/e 64

File Loops
average6.py

Computes the average of numbers listed in a file.

def main():

 fileName = input("What file are the numbers in? ")

 infile = open(fileName,'r')

 sum = 0.0

 count = 0

 line = infile.readline()

 while line != "":

 sum = sum + eval(line)

 count = count + 1

 line = infile.readline()

 print("\nThe average of the numbers is", sum / count)

Python Programming, 2/e 65

Nested Loops

• In the last chapter we saw how we could nest
if statements. We can also nest loops.

• Suppose we change our specification to allow

any number of numbers on a line in the file

(separated by commas), rather than one per

line.

Python Programming, 2/e 66

Nested Loops

• At the top level, we will use a file-processing

loop that computes a running sum and count.
sum = 0.0

count = 0

line = infile.readline()

while line != "":

 #update sum and count for values in line

 line = infile.readline()

print("\nThe average of the numbers is", sum/count)

Python Programming, 2/e 67

Nested Loops

• In the next level in we need to update the sum and
count in the body of the loop.

• Since each line of the file contains one or more
numbers separated by commas, we can split the string
into substrings, each of which represents a number.

• Then we need to loop through the substrings, convert
each to a number, and add it to sum.

• We also need to update count.

Python Programming, 2/e 68

Nested Loops
• for xStr in line.split(","):

 sum = sum + eval(xStr)

 count = count + 1

• Notice that this for statement uses line,

which is also the loop control variable for the

outer loop.

Python Programming, 2/e 69

Nested Loops
average7.py

Computes the average of numbers listed in a file.

Works with multiple numbers on a line.

import string

def main():

 fileName = input("What file are the numbers in? ")

 infile = open(fileName,'r')

 sum = 0.0

 count = 0

 line = infile.readline()

 while line != "":

 for xStr in line.split(","):

 sum = sum + eval(xStr)

 count = count + 1

 line = infile.readline()

 print("\nThe average of the numbers is", sum / count)

Python Programming, 2/e 70

Nested Loops

• The loop that processes the numbers in each line is
indented inside of the file processing loop.

• The outer while loop iterates once for each line of the
file.

• For each iteration of the outer loop, the inner for loop
iterates as many times as there are numbers on the
line.

• When the inner loop finishes, the next line of the file is
read, and this process begins again.

Python Programming, 2/e 71

Nested Loops

• Designing nested loops –

– Design the outer loop without worrying about what

goes inside

– Design what goes inside, ignoring the outer loop.

– Put the pieces together, preserving the nesting.

Python Programming, 2/e 72

Computing with Booleans

• if and while both use Boolean expressions.

• Boolean expressions evaluate to True or

False.

• So far we’ve used Boolean expressions to

compare two values, e.g.
(while x >= 0)

Python Programming, 2/e 73

Boolean Operators

• Sometimes our simple expressions do not

seem expressive enough.

• Suppose you need to determine whether two

points are in the same position – their x

coordinates are equal and their y coordinates

are equal.

Python Programming, 2/e 74

Boolean Operators
• if p1.getX() == p2.getX():

 if p1.getY() == p2.getY():

 # points are the same

 else:

 # points are different

else:

 # points are different

• Clearly, this is an awkward way to evaluate multiple

Boolean expressions!

• Let’s check out the three Boolean operators and, or,

and not.

Python Programming, 2/e 75

Boolean Operators

• The Boolean operators and and or are used to

combine two Boolean expressions and produce

a Boolean result.

• <expr> and <expr>

• <expr> or <expr>

Python Programming, 2/e 76

Boolean Operators

• The and of two expressions is true exactly when both

of the expressions are true.

• We can represent this in a truth table.

P Q P and Q

T T T

T F F

F T F

F F F

Python Programming, 2/e 77

Boolean Expressions

• In the truth table, P and Q represent smaller

Boolean expressions.

• Since each expression has two possible values,

there are four possible combinations of values.

• The last column gives the value of P and Q.

Python Programming, 2/e 78

Boolean Expressions

• The or of two expressions is true when either

expression is true.

P Q P or Q

T T T

T F T

F T T

F F F

Python Programming, 2/e 79

Boolean Expressions

• The only time or is false is when both

expressions are false.

• Also, note that or is true when both

expressions are true. This isn’t how we

normally use “or” in language.

Python Programming, 2/e 80

Boolean Operators

• The not operator computes the opposite of a

Boolean expression.

• not is a unary operator, meaning it operates on

a single expression.

 P not P

T F

F T

Python Programming, 2/e 81

Boolean Operators

• We can put these operators together to make

arbitrarily complex Boolean expressions.

• The interpretation of the expressions relies on

the precedence rules for the operators.

Python Programming, 2/e 82

Boolean Operators

• Consider a or not b and c

• How should this be evaluated?

• The order of precedence, from high to low, is not,
and, or.

• This statement is equivalent to
(a or ((not b) and c))

• Since most people don’t memorize the the Boolean
precedence rules, use parentheses to prevent
confusion.

Python Programming, 2/e 83

Boolean Operators

• To test for the co-location of two points, we
could use an and.

• if p1.getX() == p2.getX() and p2.getY() == p1.getY():

 # points are the same

else:

 # points are different

• The entire condition will be true only when both

of the simpler conditions are true.

Python Programming, 2/e 84

Boolean Operators

• Say you’re writing a racquetball simulation. The game

is over as soon as either player has scored 15 points.

• How can you represent that in a Boolean expression?
• scoreA == 15 or scoreB == 15

• When either of the conditions becomes true, the entire

expression is true. If neither condition is true, the

expression is false.

Python Programming, 2/e 85

Boolean Operators

• We want to construct a loop that continues as

long as the game is not over.

• You can do this by taking the negation of the

game-over condition as your loop condition!
• while not(scoreA == 15 or scoreB == 15):

 #continue playing

Python Programming, 2/e 86

Boolean Operators

• Some racquetball players also use a shutout

condition to end the game, where if one player

has scored 7 points and the other person

hasn’t scored yet, the game is over.
• while not(scoreA == 15 or scoreB == 15 or \

(scoreA == 7 and scoreB == 0) or (scoreB == 7 and scoreA == 0):

 #continue playing

Python Programming, 2/e 87

Boolean Operators

• Let’s look at volleyball scoring. To win, a

volleyball team needs to win by at least two

points.

• In volleyball, a team wins at 15 points

• If the score is 15 – 14, play continues, just as it

does for 21 – 20.
• (a >= 15 and a - b >= 2) or (b >= 15 and b - a >= 2)

• (a >= 15 or b >= 15) and abs(a - b) >= 2

Python Programming, 2/e 88

Boolean Algebra

• The ability to formulate, manipulate, and reason

with Boolean expressions is an important skill.

• Boolean expressions obey certain algebraic

laws called Boolean logic or Boolean algebra.

Python Programming, 2/e 89

Boolean Algebra

• and has properties similar to multiplication

• or has properties similar to addition

• 0 and 1 correspond to false and true, respectively.

Algebra Boolean algebra

a * 0 = 0 a and false == false

a * 1 = a a and true == a

a + 0 = a a or false == a

Python Programming, 2/e 90

Boolean Algebra

• Anything ored with true is true:
a or true == true

• Both and and or distribute:
a or (b and c) == (a or b) and (a or c)

a and (b or c) == (a and b) or (a and c)

• Double negatives cancel out:
not(not a) == a

• DeMorgan’s laws:
not(a or b) == (not a) and (not b)

not(a and b) == (not a) or (not b)

Python Programming, 2/e 91

Boolean Algebra

• We can use these rules to simplify our Boolean

expressions.
• while not(scoreA == 15 or scoreB == 15):

 #continue playing

• This is saying something like “While it is not the case

that player A has 15 or player B has 15, continue

playing.”

• Applying DeMorgan’s law:
while (not scoreA == 15) and (not scoreB == 15):

 #continue playing

Python Programming, 2/e 92

Boolean Algebra

• This becomes:
while scoreA != 15 and scoreB != 15

 # continue playing

• Isn’t this easier to understand? “While player A

has not reached 15 and player B has not

reached 15, continue playing.”

Python Programming, 2/e 93

Boolean Algebra

• Sometimes it’s easier to figure out when a loop should

stop, rather than when the loop should continue.

• In this case, write the loop termination condition and
put a not in front of it. After a couple applications of

DeMorgan’s law you are ready to go with a simpler but

equivalent expression.

Python Programming, 2/e 94

Other Common Structures

• The if and while can be used to express

every conceivable algorithm.

• For certain problems, an alternative structure

can be convenient.

Python Programming, 2/e 95

Post-Test Loop

• Say we want to write a program that is
supposed to get a nonnegative number from
the user.

• If the user types an incorrect input, the program
asks for another value.

• This process continues until a valid value has
been entered.

• This process is input validation.

Python Programming, 2/e 96

Post-Test Loop
• repeat

 get a number from the user

until number is >= 0

Python Programming, 2/e 97

Post-Test Loop

• When the condition test comes after the body of
the loop it’s called a post-test loop.

• A post-test loop always executes the body of
the code at least once.

• Python doesn’t have a built-in statement to do
this, but we can do it with a slightly modified
while loop.

Python Programming, 2/e 98

Post-Test Loop

• We seed the loop condition so we’re

guaranteed to execute the loop once.
• number = -1

while number < 0:

 number = eval(input("Enter a positive number: "))

• By setting number to –1, we force the loop

body to execute at least once.

Python Programming, 2/e 99

Post-Test Loop

• Some programmers prefer to simulate a post-
test loop by using the Python break statement.

• Executing break causes Python to immediately

exit the enclosing loop.

• break is sometimes used to exit what looks

like an infinite loop.

Python Programming, 2/e 100

Post-Test Loop

• The same algorithm implemented with a
break:
while True:

 number = eval(input("Enter a positive number: "))

 if x >= 0: break # Exit loop if number is valid

• A while loop continues as long as the
expression evaluates to true. Since True

always evaluates to true, it looks like an infinite

loop!

Python Programming, 2/e 101

Post-Test Loop

• When the value of x is nonnegative, the break

statement executes, which terminates the loop.

• If the body of an if is only one line long, you

can place it right after the :!

• Wouldn’t it be nice if the program gave a

warning when the input was invalid?

Python Programming, 2/e 102

Post-Test Loop

• In the while loop version, this is awkward:
number = -1

while number < 0:

 number = eval(input("Enter a positive number: "))

 if number < 0:

 print("The number you entered was not positive")

• We’re doing the validity check in two places!

Python Programming, 2/e 103

Post-Test Loop

• Adding the warning to the break version only

adds an else statement:
while True:

 number = eval(input("Enter a positive number: "))

 if x >= 0:

 break # Exit loop if number is valid

 else:

 print("The number you entered was not positive.")

Python Programming, 2/e 104

Loop and a Half

• Stylistically, some programmers prefer the

following approach:
while True:

 number = eval(input("Enter a positive number: "))

 if x >= 0: break # Loop exit

 print("The number you entered was not positive")

• Here the loop exit is in the middle of the loop

body. This is what we mean by a loop and a

half.

Python Programming, 2/e 105

Loop and a Half

• The loop and a half is an elegant way to avoid
the priming read in a sentinel loop.

• while True:

 get next data item

 if the item is the sentinel: break

 process the item

• This method is faithful to the idea of the sentinel
loop, the sentinel value is not processed!

Python Programming, 2/e 106

Loop and a Half

Python Programming, 2/e 107

Loop and a Half

• To use or not use break. That is the question!

• The use of break is mostly a matter of style and

taste.

• Avoid using break often within loops, because

the logic of a loop is hard to follow when there

are multiple exits.

Python Programming, 2/e 108

Boolean Expressions

as Decisions

• Boolean expressions can be used as control

structures themselves.

• Suppose you’re writing a program that keeps

going as long as the user enters a response

that starts with ‘y’ (like our interactive loop).

• One way you could do it:
while response[0] == "y" or response[0] == "Y":

Python Programming, 2/e 109

Boolean Expressions

as Decisions

• Be careful! You can’t take shortcuts:
while response[0] == "y" or "Y":

• Why doesn’t this work?

• Python has a bool type that internally uses 1 and 0 to

represent True and False, respectively.

• The Python condition operators, like ==, always

evaluate to a value of type bool.

Python Programming, 2/e 110

Boolean Expressions

as Decisions

• However, Python will let you evaluate any built-

in data type as a Boolean. For numbers (int,
float, and long ints), zero is considered False,

anything else is considered True.

Python Programming, 2/e 111

Boolean Expressions

as Decisions
>>> bool(0)

False

>>> bool(1)

True

>>> bool(32)

True

>>> bool("Hello")

True

>>> bool("")

False

>>> bool([1,2,3])

True

>>> bool([])

False

Python Programming, 2/e 112

Boolean Expressions

as Decisions

• An empty sequence is interpreted as False

while any non-empty sequence is taken to
mean True.

• The Boolean operators have operational

definitions that make them useful for other

purposes.

Python Programming, 2/e 113

Boolean Expressions

as Decisions

Operator Operational

definition

x and y If x is false, return x. Otherwise,

return y.

x or y If x is true, return x. Otherwise,

return y.

not x If x is false, return True. Otherwise,

return False.

Python Programming, 2/e 114

Boolean Expressions

as Decisions

• Consider x and y. In order for this to be true,
both x and y must be true.

• As soon as one of them is found to be false, we
know the expression as a whole is false and we
don’t need to finish evaluating the expression.

• So, if x is false, Python should return a false
result, namely x.

Python Programming, 2/e 115

Boolean Expressions

as Decisions

• If x is true, then whether the expression as a

whole is true or false depends on y.

• By returning y, if y is true, then true is returned.

If y is false, then false is returned.

Python Programming, 2/e 116

Boolean Expressions

as Decisions

• These definitions show that Python’s Booleans

are short-circuit operators, meaning that a true

or false is returned as soon as the result is

known.

• In an and where the first expression is false

and in an or, where the first expression is true,

Python will not evaluate the second expression.

Python Programming, 2/e 117

Boolean Expressions as Decisions
• response[0] == "y" or "Y“

• The Boolean operator is combining two operations.

• Here’s an equivalent expression:
(response[0] == "y") or ("Y")

• By the operational description of or, this expression

returns either True, if response[0] equals “y”, or “Y”,

both of which are interpreted by Python as true.

Python Programming, 2/e 118

Boolean Expressions

as Decisions

• Sometimes we write programs that prompt for

information but offer a default value obtained by
simply pressing <Enter>

• Since the string used by ans can be treated as

a Boolean, the code can be further simplified.

Python Programming, 2/e 119

Boolean Expressions

as Decisions
• ans = input("What flavor fo you want [vanilla]: ")

if ans:

 flavor = ans

else:

 flavor = "vanilla"

• If the user just hits <Enter>, ans will be an

empty string, which Python interprets as false.

Python Programming, 2/e 120

Boolean Expressions

as Decisions

• We can code this even more succinctly!
ans = input("What flavor fo you want [vanilla]: ")

flavor = ans or "vanilla“

• Remember, any non-empty answer is
interpreted as True.

• This exercise could be boiled down into one

line!
flavor = input("What flavor do you want

 [vanilla]:”) or "vanilla"

Python Programming, 2/e 121

Boolean Expressions

as Decisions

• Again, if you understand this method, feel free

to utilize it. Just make sure that if your code is

tricky, that it’s well documented!

if

123

if

• if statement: Executes a group of statements
only if a certain condition is true. Otherwise, the
statements are skipped.

– Syntax:
 if condition:
 statements

• Example:
 gpa = 3.4

 if gpa > 2.0:

 print "Your application is accepted."

124

if/else

• if/else statement: Executes one block of statements if a certain
condition is True, and a second block of statements if it is False.

– Syntax:
 if condition:
 statements
 else:
 statements

• Example:
 gpa = 1.4
 if gpa > 2.0:
 print "Welcome to Mars University!"
 else:
 print "Your application is denied."

• Multiple conditions can be chained with elif ("else if"):
 if condition:
 statements
 elif condition:
 statements
 else:
 statements

Testing conditions: if, elif, else
• Sometimes it is necessary to test a condition and to do different things, depending on

the condition.
• Examples: avoiding division by zero, branching in a menu structure etc.
• The following program greets the user with "Hello Tom", if the name he inputs is Tom:

s = raw_input ("Input your name: ")
if s == "Tom":
print "HELLO ", s

• Note the indentation and the ":" behind the if statement!
• The above program can be extended to do something if the testing condition is not

true:
s=input ("Input your name: ")
if s == "Tom":
 print("Hello ", s)
else:
 print("Hello unknown")

Testing conditions: if, elif, else

• It is possible to test more than one condition using the elif statement:

s = input ("Input your name: ")

if s == "Tom":

 print("Hello ", s)

elif s == "Carmen":

 print("I'm so glad to see you ", s)

elif s == "Sonia":

 print("I didn't expect you",s)

else:

 print("Hello unknown")

Note the indentation and the ":" behind the if, elif and else statements!

Conditions

• can check for sequence membership with is and is not:
>>> if (4 in vec):
... print '4 is'

• chained comparisons: a less than b AND b equals c:
a < b == c

• and and or are short-circuit operators:
– evaluated from left to right

– stop evaluation as soon as outcome clear

• Can assign comparison to variable:
>>> s1,s2,s3='', 'foo', 'bar'
>>> non_null = s1 or s2 or s3
>>> non_null
foo

• Unlike C, no assignment within expression

