A

7M\a\
Aﬁ/ﬁ

=
NS
N\

7=
%

_ \A
&
N

Q @«

WS
)

/\Ny

Python Programming

Dongu Yapilar: ve Boolean

Objectives

Belirli ve belirsiz dongu kavramlarini Python for ve while deyimlerinde
gerceklestirildikleri sekliyle anlamak.

Etkilesimli dongu, baslangi¢ ve bitis simgesi dongu programlama modellerini
ve bunlarin bir Python while deyimi kullanarak uygulamalarini anlamak.

Python'da dosya sonu dongusunu programlama modelini ve bu tir donguleri
uygulama yollarini anlamak.

Ic ice dOngu yapilari da dahil olmak Uzere dongl driintulerini iceren
problemlere ¢6zum tasarlayabilme ve uygulayabilme.

Boole cebirinin temel fikirlerini anlamak ve Boole operatorlerini iceren Boole
Ifadelerini analiz edebilmek ve yazabilmek.

for

for

animals = ['monkey", "lion", “elephant"] Ogrenciler dizisinde indis 6grenci olarak

for animal in animals: tanimlanir.

print(animal) Ormegin:
students=["Furkan", "Ahmet", "Sumeyye",
"Seyda", "Yusuf", "Adem"|

for number in [1, 2 3 4. 5]: for stude_nt In students:
print(student)
sguare = number * number
print(square)

for x in "Apple":
print(x)

The range() Function in Python

Bir sayi araligi olusturmak ve bunun icinde dongu yapmak istemeniz oldukca
yaygindir.

Ornegin, 1'den 1000'e kadar saymak istiyorsaniz, bir liste olusturup icine 1000
numara yerlestirmek istemezsiniz.

Bunun yerine yerlesik range() islevini kullanabilirsiniz.Bu iglev, yinelenebillir bir
say! araligl olusturmay! kolaylastirmak icin tasarlanmisgtir.

Ornegin, range() kullanarak 1'den 10'a kadar olan sayilari yazdiralim:

for number in range(1, 11):

print(hnumber)

Ornek:

for number in range(1, 21):
If number % 2 1= 0:
print(number)

Not: 1.2, ..., 20;: n-1

Ornek:

numbers =1, 2, 3, 4, 5]
for number in numbers:
If number == 3:
break
print(number)
else:
print("The loop ran from start to finish.")

For Loops: A Quick Review

The for statement allows us to iterate through a sequence of values.

for <var> 1n <sequence>:
<body>

Dongu dizin degiskeni var, dizideki ardisik her degeri alir ve dongu
govdesindeki ifadeler, her deger i¢in bir kez yurutulur.

Kullanicli tarafindan girilen bir dizi sayinin ortalamasini hesaplayabilen bir
program yazmak istedigimizi varsayalim.

Programi genel yapmak igin, herhangi bir boyuttaki sayi kumesiyle
calismalidir.

Girilen her sayiyi takip etmemize gerek yok, sadece donen toplami ve kag
sayinin eklendigini bilmemiz gerekiyor.

Bir dizi sayi bir tur dongu tarafindan islenebilir. n sayi varsa, dongu n kez
yuaratalmelidir.

Devam eden bir yekun degere ihtiyacimiz var. Bu bir akumulator kullanacaktir.

For Loops: A Quick Review

Input the count of the
numbers, n

Initialize sum to O
Loop n times

— Input a number, X
— Add x to sum

Output average as sum/n

averagel.py

i
i

A program to average a set of numbers

Illustrates counted loop with accumulator

def main () :

n = eval (input ("How many numbers do you have? "))
sum = 0.0
for 1 in range(n) :

x = eval (input ("Enter a number >> "))

sum = sum + X

print ("\nThe average of the numbers is", sum / n)

Note that sum is initialized to 0.0 so that sum/n returns a float!

For Loops: A Quick Review

How many numbers do you have? 5

Enter a number >> 32

Enter a number >> 45
Enter a number >> 34
Enter a number >> 76
Enter a number >> 45

The average of the numbers 1s 46.4

range

range

 The range function specifies a range of integers:

« range (Start, stop) - the integers between start (inclusive)
and stop (exclusive)

— It can also accept a third value specifying the change between values.
« range (Start, stop, step) -the integers between start (inclusive)
and stop (exclusive) by step

— Example:
for x in range (5, 0, -1):
print x

print '"Blastoff!"
Out5put:
4

3
2
1
Rlastoff!

12

Range: producing lists of integer numbers

e Often you need a regularly spread list of numbers from a beginning value to an end value.
e Thisis done by the range function:

" range gives a list of int numbers note that end value is NOT included! """
rl =range(11) #0...10
Print(r1)#[0, 1,2, 3,4,5,6, 7, 8, 9, 10]
r2 = range(5,16) # 5...15
Print(r2) #[5,6, 7, 8,9, 10, 11, 12, 13, 14, 15]
r3 =range(4,21,2) #4...20 step 2
Print(r3) #[4, 6, 8, 10, 12, 14, 16, 18, 20]
r4 = range(15, 4, -5) # 15....5 step -5
print (r4)# [15, 10, 5]

e The general syntax is, range (<startvalue>, <endvalue>, <stepsize>)

e Take care: A strange (and somewhat illogical) detail of the range function is that the end value is
excluded from the resulting list! The range function only works for integers!

Producing lists of floating point numbers

e If you need floating point numbers, use linspace from the Numpy module, a package that is very
useful for technical and scientific applications. This package must be installed first, it is available at

http://www.numpy.org/
e Don't forget to import the module in your script!
e Note: Here we use a slightly different method of import that avoids confusion between names of
variables and numpy funtions. There are 3 ways to import functions from a module, see appendix.
""" for floating point numbers use linspace and logspace from numpy!"""
import numpy as np
r5 = np.linspace(0,2,9)
print r5
[0.0.250.50.751.1.251.51.75 2.]
e The syntax for linspace is
linspace (<startvalue>, <stopvalue>, <number_of values>)
e The next example gives 9 logarithmically spaced values between 100 = 102 and 1000 = 103:
ré = np.logspace(2, 3, 9)
print ré6
[100. 133.35214322 177.827941 237.13737057 316.22776602
421.69650343 562.34132519 749.89420933 1000.]

for

for loop

« for loop: Repeats a set of statements over a group of values.
— Syntax:

for variableName in groupOfValues:
statements

* We indent the statements to be repeated with tabs or spaces.
« variableName gives a name to each value, so you can refer to it in the statements.
« groupOfValues can be a range of integers, specified with the range function.

— Example:

for x in range(l, 6):
print x, "squared 1s", x * X

Output:

squared 1s
squared 1s
squared 1s
squared 1s
squared 1s

b wdNd
N H— O

U1 o)

16

Cumulative loops

« Some loops incrementally compute a value that Is
Initialized outside the loop. This Is sometimes called a

cumulative sum.

sum = 0
for 1 1n range(l, 11):
sum = sum + (1 * 1)
print "sum of first 10 squares 1s", sum

Output:
sum of first 10 squares 1s 385

« Exercise: Write a Python program that computes the
actorial of an integet.

17

Iterating through a list: for

If we have to do something with all the elements of a list (or another sequence like a tuple etc.) one after the other, we use a for
loop.

The example uses the names of a list of names, one after one:

mynames = ["Sam", "Pit", "Misch"]

for nin mynames:

print "HELLO ", n

HELLO Sam

HELLO Pit

HELLO Misch

This can also be done with numbers:
from math import *

foriinrange (0, 5):

print i, "\t", sqrt(i)

00.0

11.0

21.41421356237

31.73205080757

42.0

Notes:

Python's for loop is somewhat different of the for ... next loops of other programming languages. in principle it can iterate through
anything that can be cut into slices. So it can be used on lists of numbers, lists of text, mixed lists, strings, tuples etc.

In Python the for ... next construction is often not to be missed, if we think in a "Pythonic" way.

Example: if we need to calculate a lot of values, it is not a good idea to use a for loop, as this is very time consuming. It is better to
use the Numpy module that provides array functions that can calculate a lot of values in one bunch (see below).

Iterating through a list: for

If we have to do something with all the elements of a list (or another sequence like a tuple
etc.) one after the other, we use a for loop.

The example uses the names of a list of names, one after one:
mynames = ["Sam", "Pit", "Misch"]

for nin mynames:

print "HELLO ", n

HELLO Sam

HELLO Pit

HELLO Misch

e This can also be done with numbers:

from math import *

foriin range (0, 5):

print i, "\t", sqrt(i)

00.0

11.0

21.41421356237

31.73205080757

42.0

Iterating through a list: for

This can also be done with numbers:
from math import *

foriinrange (0, 5):

print i, "\t", sqrt(i)

00.0

11.0

21.41421356237

31.73205080757

420

Notes:

Python's for loop is somewhat different of the for ... next loops of other programming languages. In

principle it can iterate through anything that can be cut into slices. So it can be used on lists of
numbers, lists of text, mixed lists, strings, tuples etc.

In Python the for ... next construction is often not to be missed, if we think in a "Pythonic" way.

Example: if we need to calculate a lot of values, it is not a good idea to use a for loop, as this is very

time consuming. It is better to use the Numpy module that provides array functions that can
calculate a lot of values in one bunch (see below).

Iterating with indexing

e Sometimes you want to iterate through a list and have access to the index (the numbering) of
the items of the list.

e The following example uses a list of colour codes for electronic parts and prints their index
and the colour. As the colours list is well ordered, the index is also the colour value.

mnin

""" Dispay resistor colour code values

colours = ["black"”, "brown", "red", "orange", "yellow",
"green”, "blue”, "violet", "grey", "white" |

cv = list (enumerate (colours))

forcincv:

print c[0], "\t", c[1]

Iterating with indexing

e The list(enumerate (....)) function gives back a list of tuples cv that contain each an index (the
numbering) and the colour value as text. If we print this we see

e [(0, 'black'), (1, 'brown'), (2, 'red’), (3, 'orange’), (4, 'yellow'), (5, 'green'), (6, 'blue’), (7,
'violet'), (8, 'grey'), (9, 'white')]

e Now we iterate on this, so we get the different tuples one after the other.

e From these tuples we print c[0], the index and c[1], the colour text, separated by a tab.

e So as aresult we get:

0 black
1 brown
2 red

8 grey
9 white

Iterating with indexing

e The list(enumerate (....)) function gives back a list of tuples cv that contain each an index (the
numbering) and the colour value as text. If we print this we see

e [(0, 'black'), (1, 'brown'), (2, 'red’), (3, 'orange’), (4, 'yellow'), (5, 'green'), (6, 'blue’), (7,
'violet'), (8, 'grey'), (9, 'white')]

e Now we iterate on this, so we get the different tuples one after the other.

e From these tuples we print c[0], the index and c[1], the colour text, separated by a tab.

e So as aresult we get:

0 black
1 brown
2 red

8 grey
9 white

Loops: break, continue, else

e break and continue like C
« else after loop exhaustion
for n 1n range(2,10):
for x 1n range(2,n):
1f n % x ==
print n, 'equals', x, '"*', n/Xx
break
else:
loop fell through without finding a factor
print n, '1s prime’

Avoiding for loops: vector functions

e Forloops tend to get slow if there are many iterations to do.

e They are not necessary for calculations on numbers, if the Numpy module is used. It can be
found here http://www.numpy.org/ and must be installed before using it.

e |n this example we get 100 values of a sine function in one line of code:
import numpy as np
calculate 100 values for x and y without a for loop
x = np.linspace(0, 2* np.pi, 100)
y = np.sin(x)
print x
printy

>>> for x in xrange(l, 3): # dikkat! xrange () fonksiyonu kullanaildai.
for v in xrange(l, 4):
print 'sd * 3d = 34dA' % (x, ¥, X¥*y)

WNEHEWNE
I
abBNWNHE

Ornek 3: D6ngliden erken cikma

for x in xrange (3) :

>>> kelime = "Merhaba
for xx in kelime:
print =

Cikti--——————————-—
M
=
Ir
h
=1
b
=1
>>>
Liste icindeki elemanlari gorintudleme
>>> kelimeler = ['Ali', 5, "Oya'l]

for x 1n kelimelerxr:
print x

Cikti--——-————————-—

Ali

5

Ovya

>

while

while

« while loop: Executes a group of statements as long as a condition is True.

— good for indefinite loops (repeat an unknown number of times)

 Syntax:
while condition:
statements

« Example:

number=1
while number < 200:
print (number)

number = number * 2

print (number)
d=math.sqgrt (number)
print (d)

— Output:
29 1 2 4 8 16 32 64 128

Dikkat: Yazim duzeni cok onemlidir.

is the test true?

exscute the
controlled statement(s)

|

execUte statemant
after while loop

Indefinite Loops

* That last program got the job done, but you need to
know ahead of time how many numbers you’ll be
dealing with.

* What we need is a way for the computer to take care
of counting how many numbers there are.

 The for loop Is a definite loop, meaning that the

number of iterations Is determined when the loop
starts.

Python Programming, 2/e

30

Indefinite Loops

» We can’t use a definite loop unless we know
the number of iterations ahead of time. We
can’t know how many iterations we need until
all the numbers have been entered.

 WWe need another tool!

* The indefinite or conditional loop keeps iterating
until certain conditions are met.

Python Programming, 2/e 31

Indefinite Loops

e while <condition>:
<body>

« condition IS a Boolean expression, justlike in 1if

statements. The body Is a sequence of one or more
statements.

« Semantically, the body of the loop executes repeatedly

as long as the condition remains true. When the
condition Is false, the loop terminates.

Python Programming, 2/e 32

Indefinite Loops

= by =

* The condition Is tested at the top of the loop. This Is
known as a pre-test loop. If the condition is Initially
false, the loop body will not execute at all.

Python Programming, 2/e

33

Indefinite Loop

* Here’s an example of a while loop that counts
from O to 10:

1 0

while 1 <= 10:
print (1)
1 =1 + 1

* The code has the same output as this for loop:

for 1 1n range(1ll):
print (1)

Python Programming, 2/e 34

Indefinite Loop

 The while loop requires us to manage the
loop variable i by initializing it to O before the

loop and incrementing it at the bottom of the
body.

* Inthe for loop this Is handled automatically.

Python Programming, 2/e 35

Indefinite Loop

 The while statement is simple, but yet

powerful and dangerous — they are a common
source of program errors.

e 1 = ()
while 1 <= 10:
print (1)

» What happens with this code?

Python Programming, 2/e

36

Indefinite Loop

* When Python gets to this loop, i Is equal to O,

which iIs less than 10, so the body of the loop Is

executed, printing 0. Now control returns to the
condition, and since i Is still 0, the loop

repeats, etc.
* This I1s an example of an infinite loop.

Python Programming, 2/e 37

Indefinite Loop

* What should you do If you’re caught in an
Infinite loop?
— First, try pressing control-c
— If that doesn’t work, try control-alt-delete
— If that doesn’t work, push the reset button!

Python Programming, 2/e

38

Example: While

Program to add natural
numbers up to
sum = 1+2+43+...+n

To take input from the user,
n = int(input{"Enter n: "))

initialize sum and counter

sum =
1 =

i <= n:
sum = sum + 1
1= i+ # update counter

print the sum
("The sum is", sum)

While

Prints all letters except 'e' and 's' # Prints number of the ‘e’
1=0 1=0
a = 'geeksforgeeks' J=0

a = 'geeksforgeeks'
while i < len(a):

if a[i] =="'e' or afi] =="'s". while 1 < len(a):
| +=1 if af[i] =="e".
continue | +=1
J=+1
print('Current Letter ', a[i]) else
| +=1 | +=1

print(‘(Number of Letter ', |

While loops

e We can use the computer to do tedious (sikici) tasks, like calculating the square roots of all integers between 0 and 100. In this case
we use a while loop:

""" Calculate quare root of numbers 0 to 100"""

import math

i=0

while i<= 100:
print(i, "\t\t" ,math.sqrt(i)) # \t: bosluk birakir
i=i+1

print("READY!")

00.0

11.0

2 1.41421356237
3 1.73205080757
98 9.89949493661
99 9.94987437107
100 10.0

READY!

While loops

e Thesyntaxis:

while <condition> :
<....

block of statements
LD

e The block of statements is executed as long as <condition> is True, in our
example as long as i <= 100.

e Take care:
Don't forget the ":" at the end of the while statement
Don't forget to indent the block that should be executed inside the while loop!

e The indentation can be any number of spaces (4 are standard), but it must be
consistent for the whole block.

While loops

e Avoid endless loops!

e |nthe following example the loop runs infinitely, as the condition is always true:
i=0
while i<=5:
Print i

e The only way to stop it is by pressing <Ctrl>-C
 Note: I =1+1 can be written in a shorter and more "Pythonic" way as
e 1+=1

Defining functions

* First line is docstring
« first look for variables in local, then global
* need global to assign global variables

Interactive Loops

* One good use of the indefinite loop Is to write
Interactive loops. Interactive loops allow a user to
repeat certain portions of a program on demand.

 Remember how we said we needed a way for the
computer to keep track of how many numbers had

been entered? Let’s use another accumulator, called
count.

Python Programming, 2/e

45

Interactive Loops

* At each iteration of the loop, ask the user If there Is
more data to process. We need to preset it to “yes” to
go through the loop the first time.

e set moredata to “yes”
whille moredata 1s “yes”
get the next data 1tem
process the 1tem
ask user 1f there 1s moredata

Python Programming, 2/e

46

Interactive Loops

* Combining the interactive loop pattern with
accumulators for sum and count:

e 1nitialize sum to 0.0
1nitialize count to O
set moredata to “yegs”
whlle moredata 1s “yes”
input a number, X
add X to sum
add 1 to count
ask user 1f there 1s moredata
OUtpUt Sum/ C OUN T python Programming, 2/e

47

Interactive Loops

averagel2.py

i
i

def

A program to average a set of numbers
Tllustrates 1nteractive loop with two accumulators

main () :
moredata = "yes"
sum = 0.0
count = 0
while moredata[0] == 'y':
x = eval (input ("Enter a number >> "))
sum = sum + X
count = count + 1
moredata = input ("Do you have more numbers (yes or no)? ")
print ("\nThe average of the numbers is", sum / count)

Using string indexing (moredata[0]) allows us to accept “y",
“yes”, “yeah” to continue the loop

Python Programming, 2/e

48

Interactive Loops

Enter a number >> 32

Do you have more numbers (yes or no)? y
Enter a number >> 45

Do you have more numbers (yes or no)? yes
Enter a number >> 34

Do you have more numbers (yes or no)? yup
Enter a number >> 76

Do you have more numbers (yes or no)? y
Enter a number >> 45

Do you have more numbers (yes or no)? nah

The average of the numbers 1s 46.4
Python Programming, 2/e

49

Sentinel Loops

* A sentinel loop continues to process data until
reaching a special value that signals the end.

» This special value Is called the sentinel.

* The sentinel must be distinguishable from the
data since it Is not processed as part of the
data.

Python Programming, 2/e

50

Sentinel Loops

e get the first data item

while 1tem 1s not the sentinel
process the 1tem
get the next data 1tem

The first item Is retrieved before the loop starts. This Is
sometimes called the priming read, since it gets the
process started.

If the first item Is the sentinel, the loop terminates and
no data Is processed.

Otherwise, the item Is processed and the next one Is
read.

Python Programming, 2/e 51

Sentinel Loops

* In our averaging example, assume we are
averaging test scores.

« \WWe can assume that there will be no score
below 0O, so a negative number will be the

sentinel.

Python Programming, 2/e

52

Sentinel Loops

average3.py
A program to average a set of numbers

Tllustrates sentinel loop using negatilive i1nput as sentinel

def main () :
sum = 0.0
count = 0
x = eval (input ("Enter a number (negative to quit) >> "))
while x >= 0:

sum = sum + X
count = count + 1
x = eval (input ("Enter a number (negative to quit) >> "))

print ("\nThe average of the numbers is", sum / count)
Python Programming, 2/e

53

Sentinel Loops

Enter a number (negative to quit) >>
Enter a number (negative to quit) >>
Enter a number (negative to quit) >>
Enter a number (negative to quit) >>
Enter a number (negative to quit) >>
Enter a number (negative to quit) >>

The average of the numbers 1s 46.4

Python Programming, 2/e

Sentinel Loops

* This version provides the ease of use of the
Interactive loop without the hassle of typing ‘y’
all the time.

* There’s still a shortcoming — using this method
we can’t average a set of positive and negative
numbers.

* If we do this, our sentinel can no longer be a
number.

Python Programming, 2/e 55

Sentinel Loops

* We could input all the information as strings.

» Valid input would be converted into numeric
form. Use a character-based sentinel.

* We could use the empty string (“’)!

Python Programming, 2/e

56

Sentinel Loops

initialize sum to 0.0
initialize count to O
input data 1tem as a string, xStr
while xStr 1s not empty
convert xStr to a number, x
add x to sum
add 1 to count
input next data i1tem as a string, XxXStr

Output sum / count

Python Programming, 2/e 57

Sentinel Loops

averaged.py
i A program to average a set of numbers

i ITllustrates sentinel loop using empty string as sentinel

def main () :
sum = 0.0
count = 0
xStr = input ("Enter a number (<Enter> to quit) >> ")
while xStr != "":
X = eval (xStr)
sum = sum + X
count = count + 1
xStr = input ("Enter a number (<Enter> to quit) >> ")

print ("\nThe average of the numbers is", sum / count)

Python Programming, 2/e

Enter
Enter
Enter
Enter
Enter
Enter

Enter

@ v v v v © QW

number
number
number
number
number
number

number

The average of

Sentinel Loops

(<Enter> to
(<Enter> to
(<Enter> to
(<Enter> to
(<Enter> to
(<Enter> to
(<Enter> to

the numbers

quit) >>
quit) >>
quit) >>
quit) >>
quit) >>
quit) >>
quit) >>

34

23

0

—-25
-34.4
22,77

1s 3.38333333333

Python Programming, 2/e

59

File Loops

* The biggest disadvantage of our program at
this point Is that they are interactive.

* What happens if you make a typo on number
43 out of 507?

* A better solution for large data sets Is to read
the data from a file.

Python Programming, 2/e

60

File Loops

averageb5.py

id Computes the average of numbers listed in a file.

def main () :

fileName = input ("What file are the numbers in? ")
infile = open(fileName, 'r')

sum = 0.0

count = 0

for line 1n infile.readlines|() :
sum = sum + eval (line)

count = count + 1

print ("\nThe average of the numbers is", sum / count)

Python Programming, 2/e

61

File Loops

 Many languages don’t have a mechanism for
looping through a file like this. Rather, they use

a sentinel!

* We could use readline In a loop to get the
next line of the file.

* At the end of the file, readline returns an

empty string, ™

Python Programming, 2/e

62

File Loops

e]line = 1infile.readline ()

while line != ""
#process line

line = infile.readline ()

Does this code correctly handle the case where
there’s a blank line in the file?

Yes. An empty line actually ends with the
newline character, and readline Includes the

newline. \n” 1=

Python Programming, 2/e 63

File Loops

averageb6.py
id Computes the average of numbers listed in a file.

def main () :

fileName = input ("What file are the numbers in? ")
infile = open(fileName, 'r')

sum = 0.0

count = 0

line = infile.readline ()

while line != "":

sum = sum + eval (line)
count = count + 1
line = infile.readline ()

print ("\nThe average of the numbers is", sum / count)

Python Programming, 2/e

Nested Loops

* In the last chapter we saw how we could nest
i f statements. We can also nest loops.

* Suppose we change our specification to allow
any number of numbers on a line In the file
(separated by commas), rather than one per
line.

Python Programming, 2/e

65

Nested Loops

» At the top level, we will use a file-processing
loop that computes a running sum and count.

sum = 0.0
count = 0
line = infile.readline ()

while line != "":
#update sum and count for values in line

line = infile.readline ()

print ("\nThe average of the numbers is", sum/count)

Python Programming, 2/e

66

Nested Loops

In the next level iIn we need to update the sum and
count In the body of the loop.

Since each line of the file contains one or more
numbers separated by commas, we can split the string
Into substrings, each of which represents a number.

Then we need to loop through the substrings, convert
each to a number, and add it to sum.

We also need to update count.

Python Programming, 2/e 67

Nested Loops

e for xStr in line.split(","):
sum = sum + eval (xStr)
count = count + 1

 Notice that this for statement uses 1ine,

which Is also the loop control variable for the
outer loop.

Python Programming, 2/e

68

Nested Loops

average7.py
T Computes the average of numbers listed 1n a file.
Works with multiple numbers on a line.

import string

def main () :

fileName = 1nput ("What file are the numbers in? ")
infile = open(fileName, 'r'")

sum = 0.0

count = 0

line = infile.readline ()

while line != "":
for xStr in line.split(","):
sum = sum + eval (xStr)
count = count + 1
line = infile.readline ()

print ("\nThe average of the num%ﬁonilgE&grasM%iﬁgc? nt)

69

Nested Loops

The loop that processes the numbers in each line Is
iIndented inside of the file processing loop.

The outer while loop iterates once for each line of the
file.

For each iteration of the outer loop, the inner for loop

iterates as many times as there are numbers on the
line.

When the Iinner loop finishes, the next line of the file Is
read, and this process begins again.

Python Programming, 2/e /0

Nested Loops

Designing nested loops —

— Design the outer loop without worrying about what
goes Iinside

— Design what goes inside, ignoring the outer loop.
— Put the pieces together, preserving the nesting.

Python Programming, 2/e

/1

Computing with Booleans

« if and while both use Boolean expressions.

* Boolean expressions evaluate to True or
False.

* So far we've used Boolean expressions to

compare two values, e.g.
(while x >= 0)

Python Programming, 2/e 72

Boolean Operators

* Sometimes our simple expressions do not
seem expressive enough.

* Suppose you need to determine whether two
points are In the same position — their x
coordinates are equal and their y coordinates
are equal.

Python Programming, 2/e

/3

Boolean Operators

1f pl.getX () == p2.getX() :
1f pl.getY () == p2.get¥ () :
points are the same
else:

points are different
else:
points are different

Clearly, this Is an awkward way to evaluate multiple
Boolean expressions!

Let's check out the three Boolean operators and, or,
and not.

Python Programming, 2/e

74

Boolean Operators

* The Boolean operators and and or are used to

combine two Boolean expressions and produce
a Boolean result.

e <expr> and <expr>

e <expr> or <expr>

Python Programming, 2/e 75

Boolean Operators

* The and of two expressions Is true exactly when both
of the expressions are true.

* We can represent this in a truth table.

P Q PandQ
T T T
T F F
F T F
F F F

Python Programming, 2/e

Boolean Expressions

* In the truth table, P and Q represent smaller
Boolean expressions.

* Since each expression has two possible values,
there are four possible combinations of values.

* The last column gives the value of P and Q.

Python Programming, 2/e 77

Boolean Expressions

* The or of two expressions Is true when either
expression Is true.

PorQ
T

M M| | 4| T
m 4| | 4|0

T
T
-

Python Programming, 2/e

Boolean Expressions

* The only time or Is false Is when both
expressions are false.

 Also, note that or Is true when both

expressions are true. This isn't how we
normally use “or” in language.

Python Programming, 2/e

79

Boolean Operators

 The not operator computes the opposite of a
Boolean expression.

e not IS a unary operator, meaning it operates on

a single expression.
P not P

T F
F T

Python Programming, 2/e

Boolean Operators

* We can put these operators together to make
arbitrarily complex Boolean expressions.

* The Interpretation of the expressions relies on
the precedence rules for the operators.

Python Programming, 2/e

81

Boolean Operators

Cconsider a or not b and c

How should this be evaluated?
The order of precedence, from high to low, Is not,

and, or.
This statement is equivalent to
(a or ((not b) and c))

Since most people don't memorize the the Boolean
precedence rules, use parentheses to prevent
confusion.

Python Programming, 2/e

82

Boolean Operators

* To test for the co-location of two points, we
could use an and.

e 1f pl.getX () == p2.getX() and pZ2.get¥ () == pl.get¥ ():
points are the same
else:

points are different

* The entire condition will be true only when both
of the simpler conditions are true.

Python Programming, 2/e 83

Boolean Operators

» Say you’re writing a racquetball simulation. The game
IS over as soon as either player has scored 15 points.

* How can you represent that in a Boolean expression?

e scoreA == 15 or scoreB == 15

* When either of the conditions becomes true, the entire
expression is true. If neither condition Is true, the
expression is false.

Python Programming, 2/e 84

Boolean Operators

* \We want to construct a loop that continues as
long as the game is not over.

* You can do this by taking the negation of the
game-over condition as your loop condition!

e while not(scoreA == 15 or scoreB == 15):
#continue playing

Python Programming, 2/e

85

Boolean Operators

» Some racquetball players also use a shutout
condition to end the game, where Iif one player
has scored 7 points and the other person
hasn’t scored yet, the game Is over.

e while not(scoreA == 15 or scoreB == 15 or \

(scoreA == 7 and scoreB == 0) or (scoreB == 7 and scoreA == () :
#continue playing

Python Programming, 2/e

86

Boolean Operators

» Let’s look at volleyball scoring. To win, a

volleyball team needs to win by at least two
points.

* In volleyball, a team wins at 15 points

* If the score Is 15 — 14, play continues, just as It
does for 21 — 20.

e (a >>= 15 and a - b > 2) or (b > 15 and b - a >= 2)
e (a >= 15 or b >= 15) and abs(a - b) >= 2

Python Programming, 2/e

87

Boolean Algebra

* The abllity to formulate, manipulate, and reason
with Boolean expressions Is an important sKill.

* Boolean expressions obey certain algebraic
laws called Boolean logic or Boolean algebra.

Python Programming, 2/e 88

Boolean Algebra

Algebra Boolean algebra
a*0=0 a and false == false
a*l=a a and true == a
at+t0=a a or false ==

« and has properties similar to multiplication
« or has properties similar to addition

« 0 and 1 correspond to false and true, respectively.

Python Programming, 2/e

89

Boolean Algebra

Anything ored with true Is true:

a oOor True == true

Both and and or distribute:

a or (b and ¢) == (a or b) and (a or c)
a and (b or c¢) == (a and b) or (a and c¢)
Double negatives cancel out:

not (not a) == a

DeMorgan’s laws:

not (a or b) == (not a) and (not b)

not (a and b) == (not a) or (not Db)

Python Programming, 2/e

90

Boolean Algebra

* We can use these rules to simplify our Boolean
expressions.

while not (scorehA == 15 or scoreB == 15):
#continue playing

* This is saying something like “While it is not the case
that player A has 15 or player B has 15, continue
playing.”

* Applying DeMorgan's law:

while (not scoreA == 15) and (not scoreB == 15):
#continue playing

Python Programming, 2/e

o1

Boolean Algebra

 This becomes:

while scoreA != 15 and scoreB != 15
continue playing

* Isn’t this easier to understand? “While player A
has not reached 15 and player B has not
reached 15, continue playing.”

Python Programming, 2/e

92

Boolean Algebra

* Sometimes It’s easier to figure out when a loop should
stop, rather than when the loop should continue.

* In this case, write the loop termination condition and
put a not In front of it. After a couple applications of

DeMorgan’s law you are ready to go with a simpler but
equivalent expression.

Python Programming, 2/e 93

Other Common Structures

 The if and while can be used to express
every concelivable algorithm.

* For certain problems, an alternative structure
can be convenient.

Python Programming, 2/e

94

Post-Test Loop

Say we want to write a program that is
supposed to get a nonnegative number from
the user.

If the user types an incorrect input, the program
asks for another value.

This process continues until a valid value has
been entered.

This process Is input validation.

Python Programming, 2/e 95

Post-Test Loop

* repeat

get a number from the user

until number 1s >= 0

)
—

et s noumbe=r

Python Programming, 2/e

96

Post-Test Loop

* When the condition test comes after the body of
the loop it’s called a post-test loop.

* A post-test loop always executes the body of
the code at least once.

* Python doesn’t have a bullt-in statement to do

this, but we can do 1t with a slightly modified
while loop.

Python Programming, 2/e 97

Post-Test Loop

* We seed the loop condition so we’re
guaranteed to execute the loop once.

e number = -1
while number < 0O:
number = eval (input ("Enter a positive number: "))

* By setting number to —1, we force the loop
body to execute at least once.

Python Programming, 2/e

98

Post-Test Loop

* Some programmers prefer to simulate a post-
test loop by using the Python break statement.

* Executing break causes Python to immediately
exit the enclosing loop.

 break IS sometimes used to exit what looks
like an infinite loop.

Python Programming, 2/e 99

Post-Test Loop

* The same algorithm implemented with a
break:

while True:

number = eval (1nput ("Enter a positive number: "))
if x >= 0: break # Exit loop 1f number is wvalid

* A while loop continues as long as the
expression evaluates to true. Since True

always evaluates to true, It looks like an infinite
loop!

Python Programming, 2/e 100

Post-Test Loop

* When the value of x Is nonnegative, the break
statement executes, which terminates the loop.

* If the body of an if Is only one line long, you
can place it right after the :!

* Wouldn't it be nice if the program gave a
warning when the input was invalid?

Python Programming, 2/e 101

Post-Test Loop

* Inthe while loop version, this is awkward:

number = -1
while number < O:
number = eval (1nput ("Enter a positive number: "))

1f number < O:
print ("The number you entered was not positive'")

* We're doing the validity check in two places!

Python Programming, 2/e 102

Post-Test Loop

» Adding the warning to the break version only
adds an else statement:

while True:
number = eval (1nput ("Enter a positive number: "))
1f x >= 0:
break # Exit loop if number is valid
else:
print ("The number you entered was not positive.")

Python Programming, 2/e 103

Loop and a Half

» Stylistically, some programmers prefer the
following approach:

while True:
number = eval (1nput ("Enter a positive number: "))
if x >= 0: break # Loop exit
print ("The number you entered was not positive")

* Here the loop exit Is In the middle of the loop

body. This Is what we mean by a loop and a
half.

Python Programming, 2/e 104

Loop and a Half

* The loop and a half is an elegant way to avoid
the priming read in a sentinel loop.

e while True:
get next data item
1f the i1tem 1s the sentinel: break
process the 1tem

* This method Is faithful to the idea of the sentinel
loop, the sentinel value Is not processed!

Python Programming, 2/e 105

Loop and a Half
|

=t e Data ib=m

s

Fooce== the item

!

Python Programming, 2/e 106

Loop and a Half

* To use or not use break. That Is the question!

* The use of break Is mostly a matter of style and
taste.

* Avoid using break often within loops, because
the logic of a loop Is hard to follow when there
are multiple exits.

Python Programming, 2/e 107

boolean EXPressions
as Decisions

* Boolean expressions can be used as control
structures themselves.

* Suppose you’re writing a program that keeps
going as long as the user enters a response
that starts with ‘y’ (like our interactive loop).

* One way you could do It:

while response[0] == "y" or response[0] == "Y":

Python Programming, 2/e 108

boolean EXPressions
as Decisions

Be careful! You can’t take shortcuts:

while response[0] == "y" or "Y":

Why doesn't this work?

Python has a bool type that internally uses 1 and 0 to
represent True and False, respectively.

The Python condition operators, like ==, always
evaluate to a value of type bool.

Python Programming, 2/e 109

boolean EXPressions
as Decisions

 However, Python will let you evaluate any built-

In data type as a Boolean. For numbers (int,
float, and long Ints), zero is considered False,

anything else Is considered True.

Python Programming, 2/e 110

boolean EXPressions

>>> bool (0)

False

>>> bool (1)

True

>>> bool (32)

True

>>> bool ("Hello")
True

>>> bool ("")
False

>>> bool ([1,2,3])
True

>>> bool ([])
False

as Decisions

Python Programming, 2/e

111

boolean EXPressions
as Decisions

* An empty sequence Is interpreted as False

while any non-empty seguence Is taken to
mean True.

* The Boolean operators have operational
definitions that make them useful for other
PUrposes.

Python Programming, 2/e 112

boolean EXPressions

as Decisions

Operator Operational
definition

X andy If X IS false, return x. Otherwise,
return y.

Xory If X IS true, return x. Otherwise,
returny.

not X If x IS false, return True. Otherwise,

return False.

Python Programming, 2/e

113

boolean EXPressions
as Decisions

* Consider x and Y. In order for this to be true,
both x and y must be true.

* As soon as one of them is found to be false, we
know the expression as a whole Is false and we
don’t need to finish evaluating the expression.

* S0, If X Is false, Python should return a false
result, namely x.

Python Programming, 2/e 114

boolean EXPressions
as Decisions

 If XIS true, then whether the expression as a
whole Is true or false depends on .

* By returning y, if y Is true, then true Is returned.
If y IS false, then false Is returned.

Python Programming, 2/e 115

boolean EXPressions
as Decisions

* These definitions show that Python’s Booleans
are short-circuit operators, meaning that a true

or false Is returned as soon as the result Is
known.

* In an and where the first expression Is false
and In an or, where the first expression Is true,

Python will not evaluate the second expression.

Python Programming, 2/e 116

Boolean Expressions as Decisions

e responsel[0] == "y" or "¥Y"

* The Boolean operator iIs combining two operations.
 Here’s an equivalent expression:

(response[O] — nyn) or ("Y")

* By the operational description of or, this expression
returns either True, if response[0] equals "y, or “Y~,

both of which are interpreted by Python as true.

Python Programming, 2/e 117

boolean EXPressions
as Decisions

* Sometimes we write programs that prompt for

iInformation but offer a default value obtained by
simply pressing <Enter>

» Since the string used by ans can be treated as
a Boolean, the code can be further simplified.

Python Programming, 2/e 118

boolean EXPressions
as Decisions

e ans = 1nput ("What flavor fo you want [vanilla]: ")
1f ans:
flavor = ans
else:
flavor = "vanilla"

If the user just hits <Enter>, ans will be an
empty string, which Python interprets as false.

Python Programming, 2/e 119

boolean EXPressions
as Decisions

» We can code this even more succmctly'

ans = 1nput('What flavor fo you want [vanillal]: ")
flavor = ans or "vanilla“

 Remember, any non-empty answer IS
Interpreted as True.

 This exercise could be boiled down Into one
lIne!

flavor = input ("What flavor do you want
[vanilla]:”) or "vanilla"

Python Programming, 2/e 120

boolean EXPressions
as Decisions

» Agalin, If you understand this method, feel free
to utilize 1t. Just make sure that if your code Is
tricky, that it’s well documented!

Python Programming, 2/e 121

If

If

- if statement: Executes a group of statements
only If a certain condition Is true. Otherwise the
statements are skipped. -

— Syntax:

if condition:
statements

* Example:

gpa = 3.4
if gpa > 2.0:
print "Your application 1s accepted."”

123

If/else

« if/else statement: Executes one block of statements if a certain
condition is True, and a second block of statements if it is False.

— Syntax:
if condition:
statements
else:
statements

« Example:
gpa = 1.4
if gpa > 2.0:
print "Welcome to Mars University!"
else:
print "Your application 1is denied."

* Multiple conditions can be chained with e1if ("else if"):
if condition:
statements
elif condition:
statements
else:
statements

124

h 4

”DA yes

execute the 'else’

controlled statement(s)

h

execute the 'if
controlled statement(s)

exgcute statemeaent
after iffelse statement <

statementl

statementz2

v

Testing conditions: if, elif, else

e Sometimes it is necessary to test a condition and to do different things, depending on
the condition.

e Examples: avoiding division by zero, branching in a menu structure etc.

e The following program greets the user with "Hello Tom", if the name he inputs is Tom:
s =raw_input ("Input your name: ")
if s=="Tom":
print "HELLO ", s

e Note the indentation and the ":" behind the if statement!

e The above program can be extended to do something if the testing condition is not
true:
s=input ("Input your name: ")
if s =="Tom":
print("Hello ", s)
else:
print("Hello unknown")

Testing conditions: if, elif, else

e [tis possible to test more than one condition using the elif statement:
s = input ("Input your name: ")
if s=="Tom":
print("Hello ", s)
elif s == "Carmen":
print("I'm so glad to see you ", s)
elif s == "Sonia":
print("l didn't expect you",s)
else:
print("Hello unknown")

Note the indentation and the ":" behind the if, elif and else statements!

Conditions

« can check for sequence membership with 1s and 1s not:

« chained comparisons: a less than b AND b equals c:

« and and or are short-circuit operators:
— evaluated from left to right
— stop evaluation as soon as outcome clear

« Can assign comparison to variable:

foo
* Unlike C, no assignment within expression

>>> puan=78
if (puan>=60 and puan<=100) : # Eger puan 60 dan biiyiik ve 100 den kiigiikse 'Geg¢ti' vya=z.
print ("Gecti")

elif (puan>=0 and puan<60) : # Yok eder puan 0 dan biiyiik wve 60 dan kiigiikse 'Kaldi' wva=z.
print ("Kaldi")

else : # Yukaridaki iki sart da false ise (gerceklesmese) 'Yanlis deder' ya=z.
print ("Yanlis degexr")

Gecti : # sonucg
>>>

